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1 Introduction

In various business contexts, particularly within tech com-
panies like Snap, the treatment variable of interest often
manifests as a continuously varying metric rather than a bi-
nary one. For example, within the domain of monetization,
our research focuses on discerning the nuanced impact of
ad frequency on user conversions and the influence of ad
load on user engagement. In the realm of engineering, our
inquiry extends to understanding how factors like app la-
tency affect user engagement, allowing us to determine the
appropriate level of engineering investment needed to en-
hance latency metrics. In the sphere of marketing, our at-
tention shifts towards assessing the influence of geolocation
events and campaigns on local engagement, particularly in
relation to proximity. This includes understanding the di-
minishing effect of billboards or local community events as
distance from the target location increases. In the domain
of sales, our primary interest revolves around examining
how sales respond to variations in coupon quantities. Accu-
rate estimations in these realms are pivotal in guiding our
efforts to optimize advertising strategies.

To comprehensively address these multifaceted business
inquiries, we go beyond computing the Average Marginal
Effect (AME), which quantifies the average change in out-
come variables when the continuous treatment variable in-
creases by one unit. We are equally committed to (1) eluci-
dating the Dose Response Curve (DRC) to understand how
the outcome variable responds to the continuous treatment
variable in a non-linear fashion, and (2) estimating the
marginal effect at specific points along the continuous treat-
ment variable.

There are many methods to estimate the Dose Response
Curve and marginal effect at each dose. [14] propose
a method to regress outcome variable on the continuous
treatment and include Generalized Propensity Score (GPS)
as a covariate. [12] propose a method about matching or
subclassifying on the propensity function. [21] propose in-
verse probability weighting (IPW) method to estimate the
average marginal effect of a continuous treatment. This
method is further considered and developed by [5] and [9].
Instead of using the IPW-based method to make the con-
tinuous treatment and observed confounders orthogonal,
there is a series of newly developed balancing methods for
continuous treatment directly minimize the correlation be-
tween the continuous treatment and observed confounders
[23, 24, 1, 10] estimate the generalized propensity score
(GPS) and achieve balance simultaneously [6]. We can

also estimate the dose-response curve by doubly robust ap-
proaches. [15] propose a kernel smooth approach while
[4, 16] focus on using double/debiased machine learning
techniques.

Within the context of tech companies like Snap, the con-
sideration of scalability plays a pivotal role in selecting ap-
propriate methods, particularly when dealing with datasets
comprising millions of observations. This study places its
primary focus on two emerging methodologies with the po-
tential to efficiently handle the estimation of continuous
treatment effects for vast numbers of analysis units: en-
tropy balancing for continuous treatment ([23, 24]) and
double/debiased machine learning for continuous treat-
ment ([4]). To evaluate their performance, we employ
semi-synthetic data, generated based on actual Snapchat
user data, to replicate intricate, non-linear relationships
among outcome variables, continuous treatment, and ob-
served confounding factors, subsequently employing this
simulated data to compare the performance of these two
methodologies. In the context of the double/debiased ma-
chine learning method, we additionally assess the perfor-
mance of various machine learning algorithms.

2 Methods for Continuous Treatment

2.1 Identification Assumptions of Continu-
ous Treatment

The identification of continuous treatment relies on some
conditions. For any value (d) of the continuous treatment
D, we have ([13]):

• Weak unconfoundedness: Y (d)|X.

• Common support: f(D = d|X) > 0.

• Balancing condition: X(d) = X.

For continuous treatment, we usually focus on two esti-
mates:

• Average treatment effect at any treatment value d:
ATE(d) = E[Y (d)]− E[Y (0].

• Marginal treatment effect at any treatment value d:
MTE(d) = ∂E[Y (d)]

∂d

2.2 Balancing Approach

The balancing approach encompasses a set of weighting
techniques designed to minimize the correlation between
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treatment variables and observed confounding factors. A
notable method within this approach is entropy balanc-
ing, pioneered by [11]. Initially devised for estimating
treatment effects in binary variables, entropy balancing has
demonstrated doubly robust properties when applied to lin-
ear data generation, as validated by [26]. [23, 24, 1] fur-
ther extend entropy balancing to handle continuous treat-
ment. Essentially, in the context of continuous treatment,
entropy balancing seeks to determine a set of weights de-
noted as w that minimize the covariance between the con-
tinuous treatment variable and each observed confounder.
This optimization is achieved while preserving the distri-
butions of both the continuous treatment variable and all
observed confounders. It is formalized below [24]:

minw

N∑
i=1

wilog(
wi

N
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p
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Xij
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In which j refers to the dimension of observable and p, q
are related moments.

After calculating the balancing weights, a nonlinear
model (e.g. local linear regression, generalized additive
model, etc) can be applied to estimate the dose response
curve and marginal effect at each point.

Overall, the balancing approach offers scalability ad-
vantages. As outlined in a recent discussion by [19], it
can be readily implemented within distributed computing
frameworks like Spark and Hive. However, it does have a
limitation in its ability to handle intricate interactions be-
tween variables, which can be overcome by complex ma-
chine learning algorithms.

2.3 Machine Learning Method

In contrast to the balancing approach, the machine learning
method offers distinct advantages by integrating variable
selection and exhibiting flexibility in capturing nonlinear-
ities and interactions. [3] present a double/debiased ma-
chine learning approach for calculating treatment effects in
binary treatments and average marginal effects in continu-
ous treatments. Building upon this foundation, [4] further
extend the framework to estimate dose-response curves and
marginal effects at various dosage levels. In the follow-
ing section, we provide a concise overview of this method-
ology and explore considerations for selecting appropriate
machine learning models.

2.3.1 Double Debiased Machine Learning for Continu-
ous Treatment

The estimation procedure of the double/debiased machine
learning method for continuous treatment in [4] is divided

into the following steps:

• Step 1. (Cross-fitting) Data sample is randomly par-
titioned into L distinct groups Iℓ, ℓ = 1, . . . , L. For
each ℓ = 1, . . . , L, the estimators of outcome model,
γ̂ℓ(d, x) for γ(d, x) ≡ E[Y | D = d,X = x], and selec-
tion model, f̂ℓ(d | x) for fD|X(d | x), are estimated by
the observations not in Iℓ.

• Step 2. (Dose response curve) The double debiased
ML (DML) estimator is defined as

β̂d ≡ 1

n

L∑
ℓ=1

∑
i∈Iℓ

{
γ̂ℓ (d,Xi) +

Kh (Di − d)

f̂ℓ (d | Xi)
(Yi − γ̂ℓ (d,Xi))

}
,

where the generalized propensity score, f̂ℓ (d | Xi),
is estimated by a kernel-based estimation method by
following the reciprocal of the generalized propensity
score (GPS).

• Step 3. (Marginal effect) Let d+ ≡ (d1 +
η/2, d2, . . . , dkd

)′ and d− ≡ (d1 − η/2, d2, . . . , dkd
)
′,

where η is a positive sequence converging to zero as
n → ∞. We estimate the partial effect of the first com-
ponent of the continuous treatment θd ≡ ∂βd/∂d1 by

θ̂d ≡
(
β̂d+ − β̂d−

)
/η.

2.3.2 Machine Learning Model Selection

The question of the type of machine learning algorithm that
will deliver good potential for estimating dose response
curves and marginal effects deserves further investigation
within the double/debiased machine learning framework.

Boosting algorithms, a prominent class of ensemble
methods, emerge as a compelling candidate in this pur-
suit. They exhibit the capability to enhance the predic-
tive accuracy and robustness of models, especially when
faced with complex and high-dimensional data. However,
conventional tree-based models, exemplified by XGBOOST
([2]), can encounter challenges in estimating marginal ef-
fects due to their rigid split training process, which hinders
appropriate estimation. Addressing this limitation, [7] in-
troduce a innovative tree-based machine learning model:
boosting smooth transition regression trees (BooST). Un-
like its predecessors, BooST transcends boosting regression
trees by extending regression trees into smooth transition
regression trees, thereby replacing hard divisions with soft
splitting. This innovation endows BooST with a critical ad-
vantage—it allows for differentiation in covariates and fa-
cilitates the analytical calculation of marginal effects. As a
result, BooST presents a pivotal advancement in the realm
of estimating dose-response curves and marginal effects
within the double/debiased machine learning framework.

In addition, deep learning has achieved unprecedented
success in a great deal of prediction problems, which is
largely explained by its considerable capacity of learn-
ing the unknown structures in prediction tasks. The var-
ious universal approximation theorems of deep learning
have justified its effectiveness in approximating functions
[20, 22, 17, 18]. As a result of the expressive power of
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DNN for approximating functions, we propose deep neu-
ral networks as a nonparametric model to recover partial
derivatives and participate in estimation competitions.

3 Simulation

3.1 Data Generating Process

Two data generating processes are performed to investigate
the estimation preciousness of dose response curve and its
corresponding partial derivatives among the balancing ap-
proach and machine learning methods.

3.1.1 Friedman Model

The first synthetic data generation process to be considered
is the classical data generation process in machine learning
first proposed by [8]. The outcome model is

y = f(x) + u

= 20sin(πx1x2 + 5) + 20(x3 − 0.5)2 + 10x4 + 5x5 + u

and selection model is specifically designed by

x1 = sin(x2x3)− cos(x3x4) + sin(x2
5) + sin(x4 − x2

5),

where the Gaussian noise u follows N(0, σ2) with σ = 5
and xi ∼ N(0, 1) for all i ∈ {1, 2, 3, 4}. The role of x1

in Friedman outcome model represents a high interactive
component with other features, which means its first order
derivative is varying and influenced by other variables.

3.1.2 Regression in Tensor Product Spaces by the
Method of Sieves (RTPS)

Second, semi-synthetic data generated by 20 million users
with 65 dimensions is utilized to evaluate the performance
of various machine learning models and balancing ap-
proach. To produce highly interacted model function struc-
tures that can be fairly compared, we employ [25]’s linear
sieve model in tensor product space (RTPS), which is easily
applied to nonparametric multivariate problems with ap-
pealing computational and statistical properties. The steps
to generate semi-synthetic data are following:

• Step 1. We randomly select 2N (N = 10 Million) users
from whole population and divide it into a training
dataset and testing dataset.

• Step 2. With a training dataset, We train the gener-
alized prosensity score f̂(D = d|X) and regression
model γ̂(D,X) by corresponding multi-variate linear
sieve models in tensor product space developed by
[25].

• Step 3. Simulate continuous treatment assignment:
with a testing dataset, we generate the continuous
treatments D̂ij = f̂(Di|Xi) + v̂j where v̂j is sampled
with replacement from the residuals of fitting gener-
alized propensity score in training dataset.

• Step 4. Simulate outcome variable: with the same
logic, we generate the predicted outcome Ŷij =

γ̂(D̂ij , Xi) + ϵ̂j where ϵ̂j is sampled with replacement
from the residuals of fitting regression model in train-
ing dataset.

3.2 Results

Within this section, we undertake a performance evalu-
ation, contrasting the effectiveness of the balancing ap-
proach against various machine learning methodologies for
the estimation of both dose-response curves and marginal
effects at varying doses. Furthermore, we engage in a dis-
cussion regarding the indispensability of the double ma-
chine learning process, enhanced by cross-fitting, as elab-
orated in [4].

3.2.1 Balancing approach moment and model selec-
tion

In the context of the balancing approach, we examine var-
ious combinations of balancing model moments (m = 1,
2, 3) and two dose-response curve models (LOESS and
GAM1). When working with data generated using the Fried-
man model (characterized by low dimensions and a sample
size of 10,000), we assess the performance of all six com-
binations of balancing moments and dose-response curve
models. In the case of data generated using the RTPS
model, particularly when dealing with high-dimensional
data and a small sample size (10,000), we limit our eval-
uation to the moment = 1 setting, as balancing all second
and third moments becomes infeasible in high-dimensional
scenarios. Lastly, for data generated using the RTPS model
with a large sample size (1 million), our assessment focuses
solely on the GAM model, as the LOESS model lacks scala-
bility for such extensive datasets.

In Figure 1, the following observations come to light:
(1) In the context of the Friedman model, the balancing
approach, while introducing some bias, effectively recon-
structs the shape of the dose-response curve. However,
when dealing with the RTPS model, the balancing approach
exhibits substantial bias and fails to accurately restore the
true dose-response curve. (2) Contrary to the findings in
[24], we note that increasing the balancing moments does
not lead to a reduction in RMSE (Root Mean Square Error).
(3) In a comparative analysis between the LOESS and GAM
models, no clear superiority emerges in the context of the
Friedman model. However, in the case of the RTPS model,
the GAM model outperforms the LOESS model.

1We employ cross-validation to determine the optimal span for the LOESS model and the appropriate value of k for the GAM model.
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Figure 1: Balancing approach moment and model compar-
ison

3.2.2 Machine learning

Machine learning model selection
In Figure 2, we have implemented the double/debiased ma-
chine learning method as outlined in [4]. We then pro-
ceeded to compare the performance of various machine
learning algorithms, including the best balancing approach
model. Our analysis yielded the following key findings:
(1) When estimating dose-response curves within the con-
text of the Friedman model, the tree-based model consis-
tently outperforms both the balancing approach and the
DNN model. Impressively, Boostsmooth exhibits even better
performance than XGBOOST. For the RTPS model, as Boost-
smooth struggles to scalably handle high-dimensional data,
and the DNN model fails to accurately estimate the gener-
alized propensity score. It is worth noting that XGBOOST
displays subpar performance with a 10K sample size but
significantly improves its performance compared to the bal-
ancing approach when dealing with 1 million samples. (2)
In the domain of marginal effect estimation, the balancing
approach consistently demonstrates the best performance
across the board.

However, we further dive into the performance compar-
isons of naive machine learning algorithms and balancing
approaching in figure 3. The performance comparison land-
scape reveals interesting distinctions: (1) In the domain
of marginal effect estimation within context of Friedman
model, naive boosted smooth significantly outperform the
rest of models. Under the RTPS model of 10K, the esti-
mation of partial derivative by DNN beat the other mod-
els. These bring us to find that the defective performance
of double ML is due to the inclusion or failure estimation
of generalized propensity score in the double ML frame-
work. In detail, the estimated generalized propensity score
suffers from overly squeeze to 0 and incurs extreme bias
to the naive estimation by ML outcome model at certain
dose levels. (2) For the estimation of dose response curve

within RTPS model with 10K sample size, the Xgboost sur-
pass the balancing approach this time. It inspires us realize
that the slightly worse performance of estimating dose re-
sponse curve by double machine learning with Xgboost is
the adverse impact of introducing bias adjustment term by
integration of generalized propensity score in the double
machine framework.

The double/debiased machine learning process, aug-
mented by cross-fitting, offers a theoretical solution to elim-
inate overfitting and achieve a doubly robust outcome. We
were intrigued by the potential performance improvements
it might bring to our simulated data. In our analysis, we fo-
cus on the machine learning model that exhibited the best
performance for each data generation process, specifically
Boostsmooth for the Friedman model and XGBOOST for the
RTPS model. We then proceeded to compare the perfor-
mance of the following specifications: (1) DML with Cross-
Fitting (Baseline), (2) DML with Full Data, (3) Naive ML
(Outcome Model Only) with Cross-Fitting, (4) Naive ML
with Full Data. Our findings reveal that, overall, there is
minimal disparity between estimates derived from full data
and cross-fitting techniques in terms of . The primary dis-
tinction arises in the comparison between Naive ML and
DML. Surprisingly, in all data generation processes, the
Naive model outperforms DML in both dose-response curve
estimation and marginal effects estimation. This leads us to
reconsider the utility of kernel-based methods in estimating
the selection model.

Figure 2: Double Machine learning algorithm comparisons
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Figure 3: Naive Machine learning algorithm comparisons

Figure 4: DML and Naive ML comparisons

Figure 5: Bias and Sd of Boosted Smooth across DRC

4 Discussion
In this research, we conduct a comparative analysis be-
tween two state-of-the-art methods: the balancing ap-
proach and double/debiased machine learning, specifically
for continuous treatment scenarios involving the estima-
tion of dose-response curves and marginal effects at various
dosage levels. Our findings indicate that machine learn-
ing techniques, particularly tree-based methods like XG-
BOOST and Boostsmooth, consistently outperform the bal-
ancing approach and DNN. Boostsmooth exhibits superior
performance even when compared to XGBOOST. It prompts
us to contemplate potential strategies for surmounting the
method’s scalability limitations.

Additionally, we delve into an examination of the ne-
cessity of the double machine learning process, coupled
with cross-fitting, as outlined in [4]. Surprisingly, our in-
vestigation reveals that Naive machine learning, which ex-
clusively models outcomes, demonstrates superior perfor-
mance when compared to the double machine learning pro-
cess.

There are some potential explanations we found are
related to the unexpected anomaly. The straightforward
and intuitive explanation is following: the failure of pre-
cise estimation of generalized propensity score introduces
extreme bias when integrating the influence function ad-
justment term into naive machine learning model. The cor-
rection term is intentionally derived for the cure of regular-
ization bias as benefits while the ill estimation of general-
ize propensity score at certain dose levels brought the ad-
verse impact of severe deviation to double machine learn-
ing method. In figure 5, we draw the bias-variance com-
parison of boosted smooth across double machine learning
models and naive machine learning models in the Friedman
model as the other models exhibit similar patterns. We can
find that both bias and variance for DML are pretty higher
than those of naive ML at certain dose levels, which further
speaks to the above explanation of the ill performance of
DML2. Despite the strong theoretical underpinnings of the
double machine learning framework, we are prompted to
reconsider the viability of the kernel-based selection model
detailed in [4]. A further exploration of efficient and pre-
cious method to recover generalized propensity score is key
step to revive the double machine learning framework for
continuous treatment developed by [4].
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